17 research outputs found

    Intelligent control of mobile robot with redundant manipulator & stereovision: quantum / soft computing toolkit

    Get PDF
    The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed. An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced. Design of robust knowledge bases is performed using a developed computational intelligence – quantum / soft computing toolkit (QC/SCOptKBTM). The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described. The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described. The general design methodology of a generalizing control unit based on the physical laws of quantum computing (quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal) is considered. The modernization of the pattern recognition system based on stereo vision technology presented. The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system

    Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum

    Get PDF
    Being motivated by recent achievements in the rapidly developing fields of optical bound states in the continuum (BICs) and excitons in monolayers of transition metal dichalcogenides, we analyze strong coupling between BICs in Ta 2 O 5 periodic photonic structures and excitons in WSe 2 monolayers. We demonstrate that giant radiative lifetime of BICs allows to engineer the exciton-polariton lifetime enhancing it three orders of magnitude compared to a bare exciton. We show that maximal lifetime of hybrid light-matter state can be achieved at any point of k-space by shaping the geometry of the photonic structure.This work was supported by the Russian Foundation for Basic Research (16-37-60064, 17-02- 01234), the Ministry of Education and Science of the Russian Federation (3.1668.2017/4.6), the President of Rus- sian Federation (MK-403.2018.2

    Light-matter interaction between photonic bound states in the continuum and bright excitons in transition metal dichalcogenides

    Get PDF
    Being motivated by recent achievements in the rapidly developing fields of optical bound states in the continuum (BICs) and excitons in monolayers of transition metal dichalcogenides, we analyze strong coupling between BICs in Ta2O5 periodic photonic structures and excitons in WSe2 monolayers. We demonstrate that giant radiative lifetime of BICs allow to engineer the exciton-polariton lifetime enhancing it three orders of magnitude compared to a bare exciton.The work has been supported by the Ministry of Education and Science of the Russian Federation (3.1668.2017/4.6), the Russian Foundation for Basic Research (16-37-60064) and the President of Russian Federation (Grant MK-403.2018.2)

    Bound states in the continuum and Fano resonances in the strong mode coupling regime

    Get PDF
    The study of resonant dielectric nanostructures with a high refractive index is a new research direction in the nanoscale optics and metamaterial-inspired nanophotonics. Because of the unique optically induced electric and magnetic Mie resonances, high-index nanoscale structures are expected to complement or even replace different plasmonic components in a range of potential applications. We study a strong coupling between modes of a single subwavelength high-index dielectric resonator and analyze the mode transformation and Fano resonances when the resonator’s aspect ratio varies. We demonstrate that strong mode coupling results in resonances with high-quality factors, which are related to the physics of bound states in the continuum when the radiative losses are almost suppressed due to the Friedrich–Wintgen scenario of destructive interference. We explain the physics of these states in terms of multipole decomposition, and show that their appearance is accompanied by a drastic change in the far-field radiation pattern. We reveal a fundamental link between the formation of the high-quality resonances and peculiarities of the Fano parameter in the scattering cross-section spectra. Our theoretical findings are confirmed by microwave experiments for the scattering of high-index cylindrical resonators with a tunable aspect ratio. The proposed mechanism of the strong mode coupling in single subwavelength high-index resonators accompanied by resonances with high-quality factors helps to extend substantially functionalities of all-dielectric nanophotonics, which opens horizons for active and passive nanoscale metadevices.The numerical calculations were performed with support from the Ministry of Education and Science of the Russian Federation (Project 3.1500.2017/4.6) and the Australian Research Council. The experimental study of the cylinder SCS in the microwave frequency range was supported by the Russian Science Foundation (17-79-20379). The analytical calculations with resonant-state expansion method were performed with support from the Russian Science Foundation (17-12-01581). A. A. B., K. L. K. and Z. F. S. acknowledge support from the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (Russia)

    High-Q resonances with low azimuthal indices in all-dielectric high-index nanoparticles

    No full text
    Recently, a novel class of high-Q optical resonators based on all-dielectric subwavelength nanoparticles with high refractive index has been proposed [M. V. Rybin, et al, arXiv:1706.02099, 2017]. Here we study a complex spectrum of such nanoscale resonators by means of the resonant-state expansion, treating the problem as a nonHermitian eigenproblem. We show that the high-Q features can be described within the mechanism of external coupling of open channels via the continuum. For ceramic resonators with permittivity = 40, we demonstrate that the quality factor of a trapped mode with a low azimuthal index could reach the value Q = 104.This work has been supported by the Ministry of Education and Science of the Russian Federation (3.1668.2017/4.6) and the Russian Foundation for Basic Research (16-02-00461, 16-37-60064, 17-02-01234)
    corecore